
TQ Website Documentation
Release 1.

Renato Bellotti, Kadir Akin

Apr 28, 2020

Contents:

1 Howtos for Non-Programmers 3
1.1 Enrol in a course . 3
1.2 I have problems enrolling . 5
1.3 Export (payment) information of the teachers . 5
1.4 Add a new partner association . 7

2 Server setup, configuration and maintenance 13
2.1 Introduction and general architecture . 13
2.2 Setup basic tools . 13
2.3 Setup local project folder . 14
2.4 Let docker install all development dependencies . 16
2.5 Load test data into database . 16
2.6 Create super user . 16
2.7 Test the website locally . 16
2.8 Setup on a Mac . 17

3 Contributing & Apply code changes 19
3.1 Troubleshooting . 19

4 Tips when working on the production server [Admin only]: 21

5 Infrastructure & Architecture 23
5.1 Python packages . 23
5.2 Non-Python Libraries & Credits . 24
5.3 Translations . 24
5.4 Enrolment in a course . 25
5.5 Payment system . 27
5.6 Unit Tests . 28
5.7 Generate Sphinx Documentation . 29
5.8 Altering the database: Migrations . 29

6 Common Problems 31
6.1 One of the migrations fails . 31
6.2 Solving migration errors . 33
6.3 CKEditor does not display an option to add links and/or images: . 34
6.4 Error during docker-compose build: . 34
6.5 I get “INTERNAL SERVER ERROR”, but neither Sentry nor the log files notice it! 35

i

6.6 Certificate renewal . 35
6.7 Enrollment error: No account for email (though the account exists) 36

7 Courses 37
7.1 Models . 38
7.2 Services . 39

8 Indices and tables 43

Python Module Index 45

Index 47

ii

TQ Website Documentation, Release 1.

Contents: 1

https://travis-ci.org/tanzquotient/tq_website
https://tq-website.readthedocs.io/en/latest/?badge=latest

TQ Website Documentation, Release 1.

2 Contents:

CHAPTER 1

Howtos for Non-Programmers

1.1 Enrol in a course

• If you do not have an account on the website: Create one.

• If you already have an account, but forgot your password, click on “Forgot Password?” in the login form and
follow the instructions.

• Log in.

• Go to courses.

3

TQ Website Documentation, Release 1.

• Scroll down and click on the “Anmelden” link of the course you want to enrol in. In the example picture, this is
the “Collaboration Cubaliente”.

• You are now at the enrolment page. It should look something like this:

• If you are enrolling to a couple course, you can enrol together with your partner. For this, enter his/her email
address in the field “Partner email”. Note that this must be the email address that your partner uses in his TQ
account. You can also enrol alone, and we will try to find a partner for you.

• Not required: Give us some hints about your experience and/or other comments.

• Check the checkbox.

4 Chapter 1. Howtos for Non-Programmers

TQ Website Documentation, Release 1.

• Click on the “Anmelden” button.

• Congratulations, you have successfully enrolled! Check your email account for a confirmation email, click the
link in it and wait for a second email from us where we confirm your enrolment definitely.

1.2 I have problems enrolling

When I try to enrol my partner, the system says that nobody with this email is registered. But when I try to create an
account for this email address, it says that this address is already used.

• Solution (student):

Contact the website admin by email informatik [at] tq.vseth.ch, or use the support chat https://t.me/joinchat/
AlE6nw89dgmPvObM8kcKQA.

• Solution (TQ responsible person):

This is a multiaccount issue caused by an old version of the website. It was possible to enrol without an
account, but the system internally created an account, which led to the situation that there were multiple accounts
associated with the same email address. Fixed on the 1st of April 2018.

– Search for the user profiles.

– Select the one where the last login lies further back. If no “last login” time is set, this means that the last
login was very long ago.

– Inactivate this profile by removing the “Active” checkbox.

1.3 Export (payment) information of the teachers

The following steps refer to the buttons in the admin panel. If you cannot see them, you probably don’t have enough
rights. Please contact the administrator in this case.

• Go to Courses –> Course offerings.

1.2. I have problems enrolling 5

https://t.me/joinchat/AlE6nw89dgmPvObM8kcKQA
https://t.me/joinchat/AlE6nw89dgmPvObM8kcKQA

TQ Website Documentation, Release 1.

• Select the course period during you’re interested in.

• Select “Export teacher payment information as CSV” in the action selection widget.

• Click “OK” and download the CSV (comma separated values) file to your computer. You can open it with your
favourite spreadsheet processing program (e. g. Microsoft Excel or LibreOffice Calc).

6 Chapter 1. Howtos for Non-Programmers

TQ Website Documentation, Release 1.

1.4 Add a new partner association

Log in to the website and go to our partner page. You might have to perform the steps below for all languages.

• Display the admin toolbar (the white toolbar).

• Click the “Edit page” button in the top right corner.

• Click on “Structure” in the top right corner.

1.4. Add a new partner association 7

https://tanzquotient.org/en/partners/

TQ Website Documentation, Release 1.

• Expand the row by clicking on it.

• Click the “+” button in the row entry to add a new thumbnail (i. e. a clickable image).

8 Chapter 1. Howtos for Non-Programmers

TQ Website Documentation, Release 1.

• Select “Thumbnail” in the list.

• Now you can select the image to display and a URL. This is the URL that will be opened if the user clicks on
the image. When you’re done, click on the “Save” button in the bottom right corner.

1.4. Add a new partner association 9

TQ Website Documentation, Release 1.

• Finally, you can add the description text below the image. To achieve this, do the same steps as before, but add
the test box as a subelement of the thumbnail you’ve just created (NOT of the row)!

10 Chapter 1. Howtos for Non-Programmers

TQ Website Documentation, Release 1.

1.4. Add a new partner association 11

TQ Website Documentation, Release 1.

12 Chapter 1. Howtos for Non-Programmers

CHAPTER 2

Server setup, configuration and maintenance

2.1 Introduction and general architecture

This file contains setup with docker. Many of the steps you may expect to setup a webstack are automatized. You can
still look them up in the Dockerfile.

The setup instructions are divided into:

• common steps for all setups

• steps for local development

• steps only necessary on the production server

The following picture sketches the setup. Some notes:

• Deployment is done by logging in to the server via SSH and pulling the (production-)branch from the repository

• The python environment is configured the same locally and on the server.

• On the server a faster and more secure web server (nginx) is used instead of the Django development server

• Some secrets (config file with login information, secret keys) are not synchronized via the repository. This
secrets also differ from the one used on development machines.

2.2 Setup basic tools

You must use git for code management and Docker for setup automation.

We use a standard Debian 8 on the server. On development machines, any operating system can be used in principle
(we know that many Linux und Mac OS versions works). The instructions here are compiled for a Debian/Ubuntu
installation.

First update your system:

13

https://github.com/tanzquotient/tq_website/blob/master/configurations/dockerfile-new
https://git-scm.com/
https://www.docker.com/

TQ Website Documentation, Release 1.

sudo apt-get update
sudo apt-get upgrade

NOTE: Package names can deviate depending on your Linux distribution.

sudo apt-get install git mysql-client

We need Docker Community Edition (CE) and docker-compose. With prerequisites satisfied, it boils down to

sudo apt-get install docker-ce
sudo curl -L "https://github.com/docker/compose/releases/download/1.11.2/docker-
→˓compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Start the docker daemon:

sudo service docker start

2.2.1 Setup basic tools with Fedora

The above instructions are basically the same with Fedora, except that you have have to use dnf instead of apt. Alto-
gether, the following instructions install everything one needs:

sudo dnf update
sudo dnf install git mysql docker docker-compose

2.2.2 IDE

Install a local IDE. We highly recommend to use PyCharm. The full version has Django support and is free for
educational purposes.

To get the educational version, go to PyCharm Student and fill out the form using an official @ethz.ch mail address.
After completing, you will receive an e-mail from JetBrains with a link to confirm your request. If all works well, you
will receive another e-mail with further instructions on how to set up a JetBrains user account.

Finally you can download PyCharm Professional Edition, extract it and place it somewhere you want. There is no
installation required. To start the program run <YourPyCharmFolder>/bin/pycharm.sh.

Activation is easiest if you download the licence-file from your JetBrains account-page. When asked for activation,
simply drag&drop the file into the activation-key textbox.

2.3 Setup local project folder

2.3.1 Pull files with git

Create a folder on your machine where you want to store the local copy of the repository. This could e.g. be in your
home directory.

mkdir ~/Projects/<project home>

Now cd into the newly created folder

14 Chapter 2. Server setup, configuration and maintenance

https://docs.docker.com/engine/installation/linux/ubuntu/
https://docs.docker.com/compose/install/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/shop/eform/students

TQ Website Documentation, Release 1.

cd ~/Projects/<project home>

and execute the following commands to tell git that your local copy of the repository now lives in this folder.

git init
git remote add origin https://github.com/gitsimon/tq_website.git
git fetch
git checkout -t origin/master

If you want to work on your own branch, create it and check it out

git branch dev-<your name>
git checkout dev-<your name>

You can push it to the server and setup push/pull by

git push -u origin <branch>

It’s a good idea to rebase your branch on the master from time to time. While your branch is checked out, run:

git rebase master

Git is a powerful tool. Have a look at the official documentation, especially on branching.

2.3.2 Make helper scripts executable

Since file permissions are not synchronized with git, you have to make the helper scripts executable:

sudo chmod +x scripts/*

2.3.3 Initial Configuration

We have to create 2 files, that are not under version control, manually:

Create the maintenance file <project home>/maintenance.conf. You can use the provided template file and
copy it with

cp configurations/maintenance-template.conf maintenance.conf

(Whenever doing maintenance on a live server, switch the flag in this file to 1 (and back again), and restart docker-
compose to make nginx reload the config and display a maintenance message)

Create the secret environment file <project home>/.env. You can use the provided template file and copy it
with

cp configurations/.env-template .env

This files are not under version control because it contains some secrets and machine dependent configurations and
secrets.

Attention: The configured mail account is used to - depending on the action - send huge amounts of auto-generated
mails. Leave the mail settings empty (as it is in the template) or configure a test mail server before starting a production-
like docker configuration (which will actually send out mails!).

2.3. Setup local project folder 15

https://git-scm.com/doc
https://git-scm.com/book/it/v2/Git-Branching-Remote-Branches

TQ Website Documentation, Release 1.

2.4 Let docker install all development dependencies

Note: In the current setup the docker-compose.yml is customized via environment variables. Due to escaping
issues, this works only with the zsh shell which may not be standard on some unix based systems.

On development machine:

Run in the <project home> directory:

docker-compose build

It will fetch all required dependencies and install it for you.

Note: This can take some minutes

Note: If you encounter a problem because some ports are already in use, you can choose your preferred development
ports in the .env-file.

In production environment (or to setup a production-like stack on development machine):

docker-compose -f docker-compose-production.yml build

Simulated production environment (to setup a production-like stack on development machine):

docker-compose -f docker-compose-production-no_ssl.yml build

2.5 Load test data into database

Get in touch with admin to get a backup of live database (with removed personal data). The backup can then be applied
to the database with (while docker is running the containers)

mysql -h 127.0.0.1 --port=3309 -u root -proot -t tq_website < database_dump.sql

2.6 Create super user

Create a superuser with your favorite name and password:

./scripts/create_superuser.sh

Note: This are the credentials to login anywhere on the frontend/backend.

Note: Even if the loaded database dump contains a user representing you you have to repeat that step since the dump
has different salted passwords, so your password will be considered invalid.

2.7 Test the website locally

Whenever working on the project, run the following command in the <project home> directory primarily:

docker-compose up --build

While this command is running you should be able to view the local, full-stack website at this addresses:

• localhost:8000 or 127.0.0.1:8000

16 Chapter 2. Server setup, configuration and maintenance

TQ Website Documentation, Release 1.

• localhost:8001 or 127.0.0.1:8001 (if you started with -f
docker-compose-production-no_ssl.yml)

2.8 Setup on a Mac

If you have a Mac and prefer to use GUIs, the following tutorial gives an alternative way over the command line setup:

2.8.1 Download the necessary Software:

• Docker for Mac

• Download PyCharm - As a student, you can get a professional license for free

• Sequel Pro

2.8.2 Debugger

1. Open the pycharm settings

2. In the Settings / Preferences dialog go to Build, Execution, Deployment and then Docker

3. Click on + and then Apply

4. Go to Project: tq_website, then Project Interpreter and in the Drop Down Menu choose Show All

5. Click on the + and then Add Remote

6. In the Pop-Up, choose Docker-Compose

a) Under Server, Docker should show up (only if you did steps 2. and 3. right)

b) Configuration Files should show your docker-compose.yml file (if not, are you in the tq_website project?)

c) Service should have Django

7. Apply and close, go back to the main editor. In the right upper corner click on the combo box reading tq_website,
and then Edit Configurations

8. In the pop-up, with the tq_website configuration selected, choose Host to be 0.0.0.0

2.8. Setup on a Mac 17

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://www.jetbrains.com/pycharm/download/#section=mac
https://sequelpro.com/download#auto-start

TQ Website Documentation, Release 1.

2.8.3 Sequel Pro

Password: root

2.8.4 PyCharm

1. On the main menu, choose File | Open.

2. Select the directory that contains the desired source code (pulled from git repository).

3. Click ok.

18 Chapter 2. Server setup, configuration and maintenance

CHAPTER 3

Contributing & Apply code changes

Note: This method of applying code changes does not destroy your test data, but gradually migrates the database.

Pull the changes from the correct branch (here the master):

git pull

If you are working on your own developper branch, pull the changes of the master branch explicitely: .. code-block::
bash

git pull origin master

It’s a good idea to rebase your branch on the master from time to time. While your branch is checked out, run: ..
code-block:: bash

git rebase master

Apply migrations to your test database by entering in a shell

./scripts/migrate.sh

Then cancel (Ctrl + C) and restart the docker-compose command to ensure changes in configuration are re-
flected. Docker will detect configuration changes with that option and rebuild containers if necessary.

docker-compose up --build

Note: If desired, see the above how to reset the database and reload a database dump. Not however, that the migrate
command still has to be run because the dump can be a little outdated compared to the newest code.

3.1 Troubleshooting

3.1.1 What often helps

Docker is complicate to predict. Some config files are not loaded ad-hoc. Whenever there is a problem, try to restart
the containers all together with

19

TQ Website Documentation, Release 1.

docker-compose restart

or

docker-compose stop
docker-compose up

(with the second option you will be directly attached to the containers and you see the output)

3.1.2 Page reload

Some assets files are cached by the browser: ensure that you make a full page reload (Ctrl + F5) or you even delete
all session cockies.

20 Chapter 3. Contributing & Apply code changes

CHAPTER 4

Tips when working on the production server [Admin only]:

• Always perform a backup before you change something on the server!!! The scripts responsible for this can
be found in the parent directory of the source code directory on the server.

– mysql-backup.sh: Performs a full dump of all databases. Then it encrypts the dump, removes the
unencrypted directory and uploads the encrypted backup to the VSETH cloud.

– mysql-backup-tq_website.sh: Performs a backup of the tq_website database. The backup is
neither encrypted nor uploaded to the cloud!

• Never ever use docker-compose down !!! This will “delete” the database! Use docker-compose
stop and docker-compose start or docker-compose restart instead.

21

TQ Website Documentation, Release 1.

22 Chapter 4. Tips when working on the production server [Admin only]:

CHAPTER 5

Infrastructure & Architecture

5.1 Python packages

This page contains information about all the Python packages that are used somewhere in the TQ website. Please keep
the information up to date and extend it as new features are added. This makes it easier for newcomers to understand
what is going on in the project.

Keep in mind that if the person who implemented a feature is not available anymore, this page is the only reliable
source of information about the dependencies.

Package name version (date of last check for updates) Purpose of the package Dependencies Need exactly version x (reason?) Last commit to the project
django-ical 1.4 (26.08.2017) iCal calendar syncronisation Django>=1.3.4, icalendar>=3.1, pytz x ?
pylint 1.7.2 (26.08.2017) Rate quality of code and check PEP8 compliance isort>=4.2.5, six, mccabe, astroid>=1.5.1 x ?
graphviz 0.8 (26.08.2017) Write UML diagrams in good graphics formats, e. g. png x x ?
python-dotenv 0.8.2 (04.06.2018) Needed for ReadTheDocs.org ? x ?
sphinx-automodapi 0.7 (04.09.2018) Generate summary of entire modules ? x ?
celery 4.2.0 (11.06.2018) task queue PyPi 5.8 x 11.06.2018 (as of 11.06.2018)
django-absolute 0.3 (11.06.2018) “provides context processors and template tags to use full absolute URLs in templates” ? x 13.11.2018 (as of 11.06.2018)
django-analytical 2.4.0 (11.06.2018) provides an easy way to use different analytics services ? x 07.12.2018 (as of 11.06.2018)
django-appconf 1.0.2 (11.06.2018) “A helper class for handling configuration defaults of packaged Django apps gracefully.” ? x 01.02.2018 (as of 11.06.2018)
django-celery-email 2.0.0 (11.06.2018) “A Django email backend that uses a Celery queue for out-of-band sending of the messages.” ? x 05.03.2018 (as of 11.06.2018)
django-celery-beat 1.1.1 (11.06.2018) extends Celery so that periodic tasks can be managed from the Django Admin interface; periodic tasks stored in DB ? x 23.05.2018 (as of 11.06.2018)
django-celery-results 1.0.1 (11.06.2018) extends Celery so that task results are stored in DB; just defines 1 model: django_celery_results.models.TaskResult ? x 23.03.2018 (as of 11.06.2018)
django-classy-tags 0.8.0 (11.06.2018) extends Django’s template system ? x 28.08.2018 (as of 11.06.2018)
django-filer 1.3.2 (11.06.2018) file upload manager for Django Django >= 1.8, django-mptt>=0.6, easy-thumbnails>=2.0, django-polymorphic>=0.7, pillow>=2.3.0 (with JPEG and ZLIB support) x 02.06.2018 (as of 11.06.2018)
django-filter 1.1.0 (11.06.2018) “allows users to filter down a queryset based on a model’s fields, displaying the form to let them do this.” Django 1.11/2.0b, DRF 3.7 x 18.04.2018 (as of 11.06.2018)
django-guardian 1.4.9 (11.06.2018) per-object permissions for Django (see paper) Django 1.8/1.10/1.11/2.0 x 28.04.2018 (as of 11.06.2018)
django_polymorphic 2.0.2 (20.08.2018) “Django-polymorphic simplifies using inherited models in Django projects.” ? >= 2.0 (for Django >= 1.11) 16.04.2018 (as of 20.08.2018)
django-formtools 2.1 (20.08.2018) “Django’s “formtools” is a set of high-level abstractions for Django forms” ? x 28.05.2018 (as of 20.08.2018)
djangocms-googlemap 1.1.1 (20.08.2018) plugins for Django CMS to embed Google Maps Django >= 1.8 x 13.04.2018 (as of 20.08.2018)
djangocms-admin-style 1.2.8 (20.08.2018) pretty stylesheets for the Django CMS admin interface ? (doc speaks of Django 1.8 and 1.9. . .) x 10.04.2018 (as of 20.08.2018)

Continued on next page

23

https://www.python.org/dev/peps/pep-0008/
https://github.com/djangoadvent/djangoadvent-articles/blob/master/1.2/06_object-permissions.rst

TQ Website Documentation, Release 1.

Table 1 – continued from previous page
Package name version (date of last check for updates) Purpose of the package Dependencies Need exactly version x (reason?) Last commit to the project
djangocms-link 2.1.2 (20.08.2018) allows to embed links on the website (?) Django >= 1.8, Python >= 3.3 x 17.02.2018 (as of 20.08.2018)
django-bootstrap3 10.0.1 (20.08.2018) “Write Django as usual, and let django-bootstrap3 make template output into Bootstrap 3 code.” Django >= 1.11 x 06.07.2018 (as of 20.08.2018)
cmsplugin-filer DEPRECATED!!!
django 1.11 (30.08.2018) The web framework –> most important package ? a supported version (1.11 is LTS) ?
django-parler 1.9.2 (30.08.2018) Translations ? x 27.08.2018 (as of 30.08.2018)
django-parler-rest 1.4.2 (30.08.2018) Translations for django-rest-framework ? x 12.09.2016 (as of 30.08.2018)
django-mptt 0.9.1 (30.08.2018) NEEDS UPDATE! “Utilities for implementing a modified pre-order traversal tree in django” Django >= 1.11 (just a supported version) 0.8.7, not newer (Django filer 1.3.2 needs this) 01.08.2018 (as of 30.08.2018)
django-post_office 3.1.0 (30.08.2018) Sends emails asynchronously (also from admin interface) django >= 1.8, django-jsonfield x 24.07.2018 (as of 30.08.2018)
mysqlclient 1.3.13 (30.08.2018) “MySQL database connector for Python (with Python 3 support)” ? >= 1.3.13 (because Alpine1.8 packages were renamed) 27.06.2018 (as of 30.08.2018)
django-countries 5.3.2 (04.09.2018) “A Django application that provides country choices for use with forms, flag icons static files, and a country field for models.” ? x 03.09.2018 (as of 04.09.2018)
django-sekizai 0.10.0 (05.09.2018) Makes it possible to load all JS & CSS files at the same location in the source code (see blog) ? x 23.09.2016 (as of 05.09.2018)
base36 0.1.1 (05.09.2018) represents strings in base36 (needed for our Unique Subscription Identifiers [USIs]) ? x 07.06.2015 (as of 05.09.2018)
PyPDF2 1.26.0 (05.09.2018) NOT NECESSARY ANYMORE! needed for PDF export of vouchers (CURRENTLY BROKEN! more details <https://github.com/tanzquotient/tq_website/issues/70>_) Pillow (on Alpine system, not virtualenv!) x 25.06.2018 (as of 05.09.2018)

5.2 Non-Python Libraries & Credits

The TQ web site uses the following libraries (only non-Python libs; for Python libs see Python dependencies):

• daleharvey/pacman: To customize the 404 error page.

5.3 Translations

5.3.1 Related documentation

Use the trans tag in HTML sites for django: https://docs.djangoproject.com/en/1.10/topics/i18n/translation/
#trans-template-tag

5.3.2 What to do

Essentially, you have to run two scripts:

scripts/makemessages.sh
scripts/compilemessages.sh

5.3.3 Mac: install gettext

1. brew install gettext in Terminal and then

2. brew link gettext --force to make it work ;)

5.3.4 Manual way (deprecated for our project)

Run django-admin makemessages -a to create the .po files. Note: Works only with gettext installed, see
below for installation

Then after you’ve updated the German text in the .po file you can run

24 Chapter 5. Infrastructure & Architecture

http://ojii.ch/post/why-sekizai/
https://docs.djangoproject.com/en/1.10/topics/i18n/translation/#trans-template-tag
https://docs.djangoproject.com/en/1.10/topics/i18n/translation/#trans-template-tag

TQ Website Documentation, Release 1.

django-admin compilemessages

to compile the language files.

Check in the language files to git as well, we don’t compile a second time on the live server.

Please use English as the default language and then add German translations.

Generate new binary files (.mo) after changing ASCII file (.po)

docker-compose run --rm django python3 manage.py compilemessage

5.4 Enrolment in a course

Enrolment in a course is not a difficult process. But since it is one of the core functionalities of this project, there needs
to be documentation.

5.4.1 High level procedure

The following flowchart gives an overview of the involved views and how they interact with each other:

5.4. Enrolment in a course 25

TQ Website Documentation, Release 1.

5.4.2 Which files are involved?

• courses/views.py: The views that handle the enrolment and present success/failure to the user

26 Chapter 5. Infrastructure & Architecture

TQ Website Documentation, Release 1.

• courses/services.py: The function subscribe is responsible for the actual enrolment

5.5 Payment system

This page gives an overview of how the payments are processed.

5.5.1 How is the processing triggered?

We use Celery to download and process payment files in regular time intervals. The Celery tasks are defined in
tq_website/tasks.py. The following Celery tasks are responsible for the payment system: - Task to download
the new transactions from PostFinance. - Task to parse the downloaded transactions and insert them into the database.
- Task to process payments.

5.5.2 How and where are the transactions stored?

• The information about the transactions are stored on an SFTP server maintained by PostFinance.

• The data format is called ISO 20022. It is XML based. The pages 37-43 describe the XML attributes: Use this
e. g. to see what information is stored and how it can be accessed.

• The downloaded files are saved in BASE_DIR/FDS_DATA_PATH, where BASE_DIR and FDS_DATA_PATH
are stored inside tq_website/settings.py. (BASE_DIR is the project root directory,
FDS_DATA_PATH = 'fds_data')

• Processed files are marked by appending .processed to the filename.

5.5.3 What does “process payments” mean?

When a payment is said to be “processed”, it means that the system tries to relate (“match”) a payment to a course sub-
scription. If the subscription cannot be successfully matched and/or the paid amount is not correct, human intervention
is needed. This is indicated by setting the payment status to MANUAL.

5.5.4 What does it mean if a payment is marked as MANUAL?

A payment can be marked for manual processing if in one of the following cases:

• The payment cannot be related (“matched”) to a course subscription.

• The paid amount is not enough to pay the subscription.

• The paid amount is higher than the subscription cost.

5.5.5 High level procedure

First, the payments are fetched and saved. Involved files:

• The payments to our bank account are fetched from an SFTP server from PostFinance.

• The XML files are parsed and for each transaction, a Payment object is inserted into the database. (The Payments
have state NEW at this point.) Afterwards, the XML file is marked as processed.

5.5. Payment system 27

http://www.celeryproject.org/
https://www.six-interbank-clearing.com/dam/downloads/en/standardization/iso/swiss-recommendations/implementation-guidelines-camt.pdf

TQ Website Documentation, Release 1.

• The following operations are applied to new payments: Debit transactions (money that goes out of our account)
are marked as IRRELEVANT. Process the credit transactions (money comes into our account) in the following
way: If something goes wrong while processing a payment, set the payment state to MANUAL. If the payment can
be successfully matched to a course subscription, a SubscriptionPayment is created and stored in the database.
Then, the payment status is changed: If the paid amount is equal to the amount that is to be paid, the state of
the Payment object is set to MATCHED. If the payed amount is not enough or too much, the state of the Payment
object is set to MANUAL.

Finally, all MATCHED payments are marked as paid and PROCESSED.

• In all cases where a subscription is marked as paid, an “online payment successful” email is sent to the user.

5.5.6 Which files are involved?

• tq_website/tasks.py: contains the Celery tasks

• payments/postfinance_connector.py: Contains code to download XML files from a PostFinance
SFTP server and extract payments from them

• payments/payment_processor.py: Contains code to process the new payments.

• payments/models.py: Contains the classes related to payments (especially Payment and
SubscriptionPayment)

5.6 Unit Tests

This project uses unit tests to guarantee correctness of the code and make it easier to update dependencies without
breaking anything.

5.6.1 General rule

Whenever a new feature is implemented, the corresponding unit tests should also be written. The list below should be
updated.

5.6.2 How to run tests

The tests can be run by invoking scripts/run_tests.sh from the project root directory. The test database is
generated the first time you run the script and kept in order to speed up the test execution.

This means that you have to call scripts/delete_test_database.shwhenever a model changes because
the test database is not synchronized with the code!

5.6.3 Parts of the code for which tests exist

Currently, there are no tests.

5.6.4 Test environment

Some testing data is stored in so called fixtures. The most important data is:

28 Chapter 5. Infrastructure & Architecture

TQ Website Documentation, Release 1.

Root user:

name: root

password: root

Test users:

• name: Max Mustermann

password: testtest

email: example@host.com

• name: Maxima Musterfrau

password: testtest

email: example_2@host.com

5.7 Generate Sphinx Documentation

Run the following command to generate the Sphinx documentation:

scripts/build_doc.sh

5.8 Altering the database: Migrations

5.8.1 What are migrations for?

Every time changes are made to a model, migrations have to be created and applied to the database in order to tell it
that its structure has changed. Migrations also determine what happens to entries that already exist in the database. A
migrations file contains SQL code that is executed in the database.

5.8.2 How can I create migrations?

In the root directory of our git directory, enter the following command in the terminal:

scripts/makemigrations.sh

5.8.3 How can I apply migrations?

In the root directory of our git directory, enter the following command in the terminal:

scripts/migrate.sh

5.8.4 WARNING

Before applying migrations to the production database, always make a backup!!!

5.7. Generate Sphinx Documentation 29

mailto:example@host.com
mailto:example_2@host.com

TQ Website Documentation, Release 1.

30 Chapter 5. Infrastructure & Architecture

CHAPTER 6

Common Problems

6.1 One of the migrations fails

6.1.1 Problem

During migrations, an error message similar to the one below is printed:

Traceback (most recent call last):
File "manage.py", line 10, in <module>
execute_from_command_line(sys.argv)

File "/usr/local/lib/python3.5/site-packages/django/core/management/__init__.py",
→˓line 367, in execute_from_command_line

utility.execute()
File "/usr/local/lib/python3.5/site-packages/django/core/management/__init__.py",

→˓line 359, in execute
self.fetch_command(subcommand).run_from_argv(self.argv)

File "/usr/local/lib/python3.5/site-packages/django/core/management/base.py", line
→˓294, in run_from_argv

self.execute(*args, **cmd_options)
File "/usr/local/lib/python3.5/site-packages/django/core/management/base.py", line

→˓345, in execute
output = self.handle(*args, **options)

File "/usr/local/lib/python3.5/site-packages/django/core/management/commands/
→˓migrate.py", line 204, in handle

fake_initial=fake_initial,
File "/usr/local/lib/python3.5/site-packages/django/db/migrations/executor.py",

→˓line 115, in migrate
state = self._migrate_all_forwards(state, plan, full_plan, fake=fake, fake_

→˓initial=fake_initial)
File "/usr/local/lib/python3.5/site-packages/django/db/migrations/executor.py",

→˓line 145, in _migrate_all_forwards
state = self.apply_migration(state, migration, fake=fake, fake_initial=fake_

→˓initial)
File "/usr/local/lib/python3.5/site-packages/django/db/migrations/executor.py",

→˓line 244, in apply_migration (continues on next page)

31

TQ Website Documentation, Release 1.

(continued from previous page)

state = migration.apply(state, schema_editor)
File "/usr/local/lib/python3.5/site-packages/django/db/migrations/migration.py",

→˓line 129, in apply
operation.database_forwards(self.app_label, schema_editor, old_state, project_

→˓state)
File "/usr/local/lib/python3.5/site-packages/django/db/migrations/operations/models.

→˓py", line 96, in database_forwards
schema_editor.create_model(model)

File "/usr/local/lib/python3.5/site-packages/django/db/backends/base/schema.py",
→˓line 295, in create_model

self.execute(sql, params or None)
File "/usr/local/lib/python3.5/site-packages/django/db/backends/base/schema.py",

→˓line 112, in execute
cursor.execute(sql, params)

File "/usr/local/lib/python3.5/site-packages/django/db/backends/utils.py", line 79,
→˓in execute

return super(CursorDebugWrapper, self).execute(sql, params)
File "/usr/local/lib/python3.5/site-packages/django/db/backends/utils.py", line 64,

→˓in execute
return self.cursor.execute(sql, params)

File "/usr/local/lib/python3.5/site-packages/django/db/utils.py", line 94, in __
→˓exit__

six.reraise(dj_exc_type, dj_exc_value, traceback)
File "/usr/local/lib/python3.5/site-packages/django/utils/six.py", line 685, in

→˓reraise
raise value.with_traceback(tb)

File "/usr/local/lib/python3.5/site-packages/django/db/backends/utils.py", line 62,
→˓in execute

return self.cursor.execute(sql)
File "/usr/local/lib/python3.5/site-packages/django/db/backends/mysql/base.py",

→˓line 110, in execute
return self.cursor.execute(query, args)

File "/usr/local/lib/python3.5/site-packages/MySQLdb/cursors.py", line 226, in
→˓execute

self.errorhandler(self, exc, value)
File "/usr/local/lib/python3.5/site-packages/MySQLdb/connections.py", line 36, in

→˓defaulterrorhandler
raise errorvalue

File "/usr/local/lib/python3.5/site-packages/MySQLdb/cursors.py", line 217, in
→˓execute

res = self._query(query)
File "/usr/local/lib/python3.5/site-packages/MySQLdb/cursors.py", line 378, in _

→˓query
rowcount = self._do_query(q)

File "/usr/local/lib/python3.5/site-packages/MySQLdb/cursors.py", line 341, in _do_
→˓query

db.query(q)
File "/usr/local/lib/python3.5/site-packages/MySQLdb/connections.py", line 280, in

→˓query
_mysql.connection.query(self, query)

django.db.utils.OperationalError: (1050, "Table 'courses_coursesuccession' already
→˓exists")

6.1.2 Solution

• Shut down all containers: docker-compose down

32 Chapter 6. Common Problems

TQ Website Documentation, Release 1.

• Delete all docker containers and volumes. Delete the containers first in order to be able to delete the associ-
ated volumes. WARNING: This erases the entire database on your system. Useful commands: - docker
container ls to get the ID of the containers, docker container rm [ID] to remove the container
whose ID is [ID] - docker volume ls to get the ID of the volumes, docker volume rm [ID] to
remove the volume whose ID is [ID]

• Start the server: docker-compose up

• In another terminal (while the server is still running): mysql -h 127.0.0.1 --port=3309 -u root
-proot -t tq_website < path/to/dump_now.sql, where you have to set the correct path to the
database dump that your IT board member gave you. Wait until this command has completed.

• Kill the server.

• Run scripts/migrate.sh from within the folder where the TQ website code is located.

• Start the server using docker-compose up. Your server should work fine now.

6.2 Solving migration errors

The steps described in this article were developed for this commit. It took a long time to arrive at this solution. So
now that you’re here: it’s not because you’re stupid!

6.2.1 Scenario:

You try to migrate using our scripts/makemigrations.sh and scripts/migrate.sh scripts. When you
run makemigrations.sh, everything is fine and you get a list of (external) apps for which updates exist:

But when you run migrate.sh, you get the following error message:

6.2.2 Solution:

• Locate the Python packages corresponding to the Django apps that are listed by makemigrations.sh.

• Find the entries (and therefore the versions) of the packages in our configurations/
python-requirements. In the images above, the affected packages are cmsplugin-filer,
django-filer (not sure if both are needed. . . if in doubt, just upgrade all candidates)
djangocms-googlemap, djangocms-inherit and djangocms-link.

6.2. Solving migration errors 33

https://github.com/tanzquotient/tq_website/commit/238c0fbb66560df996e5186fef9a141d769c726c

TQ Website Documentation, Release 1.

• Search for the packages on PyPI and get the newest version.

• Update python-requirements.txt to the new values.

Always use == to indicate versions, never use >= !

Reason: Package upgrades might break our images. So if external package A is updated and the new version
would break our build, we don’t notice this. But when somebody tries to build our docker image at some point
in the future, the build fails, although it has always worked before! Then it’s difficult to find the correct package
version that were in use at the time when the dependency was added/updated.

• Rebuild the image; the following code should be run in the parent directory that contains all code:

docker-compose build

• Actually perform the migrations:

scripts/makemigrations.sh
scripts/migrate.sh

• Don’t forget to update the table of our dependencies!

6.3 CKEditor does not display an option to add links and/or images:

Run the following lines on the server:

docker-compose run --rm django python3 manage.py cms check
docker-compose run --rm django python3 manage.py cms delete-orphaned-plugins

You have to confirm the last command manually.

6.4 Error during docker-compose build:

Error:

Run the following lines on the server:

docker-compose build --no-cache

34 Chapter 6. Common Problems

https://pypi.python.org/pypi

TQ Website Documentation, Release 1.

6.5 I get “INTERNAL SERVER ERROR”, but neither Sentry nor the log
files notice it!

6.5.1 Background

This has already occurred once. In fact, the bug was reported by a teacher on 2018-04-08. The corresponding issue was
#184. It was fixed on 2018-04-17 after hours of debugging (commit 945a8839f679951277c5d53c2311267a699c48c3).

6.5.2 Debugging process

Since no error message was generated, debugging had to be done manually:

• The error could not be reproduced on a development server (it only occurred for a few courses), so code mod-
ifications were performed on the production server AFTER PERFORMING A BACKUP. The changes were
copied to a developer machine and committed, then deleted on the server to get in a consistent state. Then, the
solution was pulled from the repo.

• Debugging was done in the following way:

Different messages were printed to the browser by return them as the message to an HttpResponse object.

6.5.3 Solution

Debugging made it clear that the error did not come from the view. Commenting out different lines of code indicated
that the part where the filename was set lead to the error. The reason was the following:

In that course period, the people from dance administration used German Umlaut characters (ü, ä, ö) in the course
name.

Example: Social 2(Axel) früh (FS2018 Q2)

Since the filename of the file to be downloaded should not contain such characters, an error was thrown.

It was then easy to fix the error by simply converting the Umlauts to their corresponding ASCII form (Ex.: ü –> ue)

6.6 Certificate renewal

The live server uses https://letsencrypt.org to provide secure, HTTPS connections. Every 3 months, the certificates
expire and must be renewed. Ideally this is done by a cronjob, however due to Issue #114 this is not working at the
moment. The procedure to renew the certificate is:

• Stop the live server:

cd tq_website
docker-compose stop

• Renew certificates:

certbot renew

• Start the live server again:

docker-compose up -d

6.5. I get “INTERNAL SERVER ERROR”, but neither Sentry nor the log files notice it! 35

https://letsencrypt.org

TQ Website Documentation, Release 1.

• Check the logs and make sure everything is running as expected.

• Enjoy a cup of coffee.

6.7 Enrollment error: No account for email (though the account ex-
ists)

This issue stems from an old version of the website: There, it was possible to enrol to a course without having an
account. The website then internally created an account for the subscription. That lead to multiple acocunts per email
address, which seems to break allauth, the authentication plugin we’re using.

Solution: Make all users that have the same email address inactive but one. Do this by clocking on “tanzquotient.org”
in the admin bar, then “users. . . ” and search for the email address. Then mark the accounts you want to inactivate
(policy: the surviving account should be the one with the most recent “last logged in” field), then select “Make
inactive” in the dropdown actions list.

36 Chapter 6. Common Problems

37

TQ Website Documentation, Release 1.

CHAPTER 7

Courses

7.1 Models

7.1.1 Diagram

courses.models.address.Address

django.db.models.base.Model

courses.models.bank_account.BankAccount

courses.models.confirmation.Confirmation

parler.models.TranslatableModel

courses.models.course_succession.CourseSuccession

courses.models.irregular_lesson.IrregularLesson

courses.models.lesson_details.LessonDetails

courses.models.offering.Offering

courses.models.period.Period

courses.models.period_cancellation.PeriodCancellation

courses.models.regular_lesson.RegularLesson

courses.models.regular_lesson_exception.RegularLessonException

courses.models.rejection.Rejection

courses.models.song.Song

courses.models.subscribe.Subscribe

courses.models.teach.Teach

courses.models.teach_lesson.TeachLesson

courses.models.teacher_welcome.TeacherWelcome

courses.models.user_profile.UserProfile

courses.models.voucher.Voucher

courses.models.voucher_purpose.VoucherPurpose

courses.models.choices.course_subscription_type.CourseSubscriptionType

courses.models.choices.gender.Gender

courses.models.choices.matching_state.MatchingState

courses.models.choices.offering_type.OfferingType

courses.models.choices.payment_method.PaymentMethod

courses.models.choices.rejection_reason.RejectionReason

courses.models.choices.residence.Residence

courses.models.choices.student_status.StudentStatus

courses.models.choices.subscribe_state.SubscribeState

courses.models.choices.weekday.Weekday

courses.models.course.Course

courses.models.course_type.CourseType

courses.models.room.Room

courses.models.style.Style

parler.models.TranslatableModelMixin

38 Chapter 7. Courses

TQ Website Documentation, Release 1.

7.1.2 Summary

Address(id, street, plz, city, country)
BankAccount(id, iban, bank_name, . . .)
Confirmation(id, subscription, date, mail)
Course(id, name, type, subscription_type, . . .)
CourseSubscriptionType
CourseSuccession(id, predecessor, successor)
CourseType(id, name, level, couple_course)
Gender
IrregularLesson(id, course, date, time_from, . . .)
LessonDetails(id, room)
MatchingState
Offering(*args, **kwargs) An offering is a list of courses to be offered in the given

period
OfferingType
PaymentMethod
Period(id, name, date_from, date_to)
PeriodCancellation(id, name, period, date)
RegularLesson(id, course, weekday, . . .)
RegularLessonException(id, regular_lesson,
. . .)
Rejection(id, subscription, date, reason, . . .)
RejectionReason
Residence
Room(id, name, address, url, contact_info)
Song(id, title, artist, length, speed, . . .)
StudentStatus
Style(id, name, parent_style, . . .)
Subscribe(id, user, course, date, partner, . . .)
SubscribeState
Teach(id, teacher, course, welcomed, hourly_wage)
TeachLesson(id, teacher, lesson, hourly_wage)
TeacherWelcome(id, teach, date, mail)
UserProfile(user, language, legi, gender, . . .)
Voucher(id, purpose, percentage, key, . . .)
VoucherPurpose(id, name, description)
Weekday

7.1.3 Details

7.2 Services

7.2.1 Summary

Course(id, name, type, subscription_type, . . .)
CourseManager()
DEFAULT_BODY_HEIGHT int(x=0) -> integer int(x, base=10) -> integer

Continued on next page

7.2. Services 39

TQ Website Documentation, Release 1.

Table 2 – continued from previous page
Http404
HttpResponseServerError([content])
INVALID_TITLE_CHARS Compiled regular expression objects
IrregularLesson(id, course, date, time_from, . . .)
MESSAGE_NO_PARTNER_SET str(object=”) -> str str(bytes_or_buffer[, encoding[, er-

rors]]) -> str
MatchingState
NoPartnerException
ObjectDoesNotExist The requested object does not exist
Offering(*args, **kwargs) An offering is a list of courses to be offered in the given

period
OfferingType
Prefetch(lookup[, queryset, to_attr])
Q(*args[, _connector, _negated]) Encapsulate filters as objects that can then be combined

logically (using & and |).
RegularLesson(id, course, weekday, . . .)
RegularLessonException(id, regular_lesson,
. . .)
Subscribe(id, user, course, date, partner, . . .)
SurveyInstance(id, survey, email_template, . . .)
TranslationUtils
User(*args, **kwargs) Users within the Django authentication system are rep-

resented by this model.
UserProfile(user, language, legi, gender, . . .)
Voucher(id, purpose, percentage, key, . . .)
Weekday
breakup_couple(subscriptions, request)
calculate_relevant_experience(user,
course)

finds a list of courses the “user” did already and that are
somehow relevant for “course”

clean_username(name) first try to find ascii similar character, then strip away
disallowed characters still left

confirm_subscription(subscription[, . . .]) sends a confirmation mail if subscription is confirmed
(by some other method) and no confirmation mail was
sent before

confirm_subscriptions(subscriptions[, . . .])
copy_course(course[, to, set_preceeding_course])
correct_matching_state_to_couple(subscriptions)
create_course_info(course)
create_user_info(user)
date date(year, month, day) –> date object
detect_rejection_reason(subscription) detect the reason why the subscription is rejected :re-

turn: the reason as constant from Rejection.Reason
export(export_format, title, data[, multiple])
export_subscriptions(course_ids, ex-
port_format)
export_summary exports a summary of all offerings with room usage,

course/subscription numbers
export_teacher_payment_information Exports a summary of the given offerings concern-

ing payment of teachers.
find_unused_username_variant(name[,
ignore])

Continued on next page

40 Chapter 7. Courses

TQ Website Documentation, Release 1.

Table 2 – continued from previous page
format_prices(price_with_legi, . . . [, . . .])
generate_voucher_pdf(vouchers)
get_all_offerings()
get_current_active_offering()
get_historic_offerings([offering_type])
get_offerings_to_display([request, . . .]) return offerings that have display flag on and order them

by start date in ascending order
get_or_create_userprofile(user)
get_sections(offering[, course_filter])
get_subsequent_offering()
get_upcoming_courses_without_offering()
log Instances of the Logger class represent a single logging

channel.
match_partners(subscriptions[, request])
model_attribute_language_fallback(model,
. . .)
reject_subscription(subscription[, reason,
. . .])

sends a rejection mail if subscription is rejected (by
some other method) and no rejection mail was sent be-
fore

reject_subscriptions(subscriptions[, . . .]) same as reject_subscription, but for multiple subscrip-
tions at once

reverse(viewname[, urlconf, args, kwargs, . . .])
send_course_email(data, courses)
send_online_payment_successful(subscription)
send_participation_confirmation(subscription)
send_payment_reminder(subscription)
send_rejection(subscription, reason)
send_sorry_for_incorrect_reminder(subscription)
send_subscription_confirmation(subscription)
send_teacher_welcome(teach)
send_vouchers(data, recipients)
settings A lazy proxy for either global Django settings or a cus-

tom settings object.
subscribe(course_id, data) Actually enrols a user or a pair of users in a course
unconfirm_subscriptions(subscriptions[,
request])
unmatch_partners(subscriptions, request)
unreject_subscriptions(subscriptions[, re-
quest])
update_user(user, user_data)
welcome_teacher(teach)
welcome_teachers(courses, request)
welcome_teachers_reset_flag(courses,
request)

7.2.2 Details

exception courses.services.NoPartnerException

courses.services.calculate_relevant_experience(user, course)
finds a list of courses the “user” did already and that are somehow relevant for “course”

7.2. Services 41

TQ Website Documentation, Release 1.

courses.services.clean_username(name)
first try to find ascii similar character, then strip away disallowed characters still left

courses.services.confirm_subscription(subscription, request=None, al-
low_single_in_couple_course=False)

sends a confirmation mail if subscription is confirmed (by some other method) and no confirmation mail was
sent before

courses.services.export_summary()
exports a summary of all offerings with room usage, course/subscription numbers

courses.services.export_teacher_payment_information()
Exports a summary of the given offerings concerning payment of teachers.

Contains profile data relevant for payment of teachers and how many lesson at what rate to be paid.

Parameters

• export_format – export format

• offerings – offerings to include in summary

Returns response or None if format not supported

courses.services.get_offerings_to_display(request=None, force_preview=False,
only_regular_offerings=False)

return offerings that have display flag on and order them by start date in ascending order

courses.services.reject_subscription(subscription, reason=None, send_email=True)
sends a rejection mail if subscription is rejected (by some other method) and no rejection mail was sent before

courses.services.reject_subscriptions(subscriptions, reason=None, send_email=True)
same as reject_subscription, but for multiple subscriptions at once

courses.services.subscribe(course_id, data)
Actually enrols a user or a pair of users in a course

42 Chapter 7. Courses

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

43

TQ Website Documentation, Release 1.

44 Chapter 8. Indices and tables

Python Module Index

c
courses.models, 39
courses.services, 41

45

TQ Website Documentation, Release 1.

46 Python Module Index

Index

C
calculate_relevant_experience() (in mod-

ule courses.services), 41
clean_username() (in module courses.services), 41
confirm_subscription() (in module

courses.services), 42
courses.models (module), 39
courses.services (module), 41

E
export_summary() (in module courses.services), 42
export_teacher_payment_information() (in

module courses.services), 42

G
get_offerings_to_display() (in module

courses.services), 42

N
NoPartnerException, 41

R
reject_subscription() (in module

courses.services), 42
reject_subscriptions() (in module

courses.services), 42

S
subscribe() (in module courses.services), 42

47

	Howtos for Non-Programmers
	Enrol in a course
	I have problems enrolling
	Export (payment) information of the teachers
	Add a new partner association

	Server setup, configuration and maintenance
	Introduction and general architecture
	Setup basic tools
	Setup local project folder
	Let docker install all development dependencies
	Load test data into database
	Create super user
	Test the website locally
	Setup on a Mac

	Contributing & Apply code changes
	Troubleshooting

	Tips when working on the production server [Admin only]:
	Infrastructure & Architecture
	Python packages
	Non-Python Libraries & Credits
	Translations
	Enrolment in a course
	Payment system
	Unit Tests
	Generate Sphinx Documentation
	Altering the database: Migrations

	Common Problems
	One of the migrations fails
	Solving migration errors
	CKEditor does not display an option to add links and/or images:
	Error during docker-compose build:
	I get “INTERNAL SERVER ERROR”, but neither Sentry nor the log files notice it!
	Certificate renewal
	Enrollment error: No account for email (though the account exists)

	Courses
	Models
	Services

	Indices and tables
	Python Module Index
	Index

